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Goals of workshop 

1. Increase your awareness of the advantages 
AND limitations of integrated population 
models 

2. Convey to you what the heck an “integrated 
population model” is 

3. Guide you through different types of 
procedures for fitting integrated population 
models to available sources of bear data 
(Bayesian and otherwise) 

In the next 1.5 hours, I hope to (in no particular order): 



Goals of workshop 

4. Guide you through different types of 
procedures for fitting integrated population 
models to available sources of bear data 

5. Introduce you to available software options 

6. Give you some intuition as to whether your 
results are going to be worth a damn 

7. Provide a few examples of integrated 
population models in use 

 

In the next 1.5 hours, I hope to (in no particular order): 



Goals of workshop 

8. Describe how power analysis can (and 
should!) be used to help evaluate how much 
extra data you’re going to have to collect 

9. Take a few questions 

In the next 1.5 hours, I hope to (in no particular order): 



What this workshop is not 

This isn’t a self-affirmation workshop.  Most of you 
probably don’t have sufficient data to reliably apply these 
approaches (at least right now). 

Abracadabra! 



What the heck is an integrated 
population model? 

It’s a term that my coauthors and I (Fieberg et al. 2010, 
PLoS ONE) invented to get more literature citations. 

•A different name for a fisheries stock assessment model 
fitted to wildlife data 
•If using a Bayesian /hierarchical modeling framework, 
other names could be used (state space model, hidden 
process model) 
•Use available data to estimate parameters of a very 
simple population model 



Model type 
Age 

structure Removals Indices 
Natural 

Mortality Biology 
Statistical catch-age x x x x x 
Catch free x x x x 
Stock reduction x x x x 
Tuned VPA x x x x 
VPA/Cohort analysis x x x 
Surplus production x x 

Data requirements for some common 
fisheries stock assessment models 

Haddon, 2001. Modelling and Quantitative Methods in Fisheries 
Quinn and Deriso, 1999. Quantitative Fish Dynamics 
 



Outputs for some common fisheries stock 
assessment models 

Haddon, 2001. Modelling and Quantitative Methods in Fisheries 
Quinn and Deriso, 1999. Quantitative Fish Dynamics 
 

Model type 
Abundance 

at age Biomass 
Fishing* 
mortality Recruitment* 

Mgmt. 
reference 

points 
Statistical catch-age x x x x x 
Catch free x x 
Stock reduction x x x x x 
Tuned VPA x x x x x 
VPA/Cohort analysis x x x x 
Surplus production x x x 



Possible data sources: Bear populations 

•Age-at-harvest 
•Reporting  surveys 
•Indices of abundance 
•Mark-recapture-recovery data 
•Telemetry data 
•Reproductive ecology studies 
•Meta-analysis 
•Covariates thought to influence 
survival/harvest (hunter effort, forage index) 



C11   C12   C13   C14   C1A+ 

C21   C22   C23   C24   C2A+ 

C31   C32   C33   C34   C3A+ 

C41   C42   C43   C44   C4A+ 

 

Observed age-at-harvest 
matrix 

Year 

Age 

Age-at-harvest Data 

Data commonly obtained 
for fish and wildlife 
populations  

• Hunter check stations  

• Parts collection surveys 

• Fishing boat surveys 



Age-At-
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Abundance 
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D
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Survival 

Recruitment Sampling 
Probability 

Age-at-harvest Data 



Age-at-harvest Data – how to 
interpret ? 

160  240 

144  216 

128  192 

112  168 
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Age-at-harvest Data – how to 
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H1: The population is 
decreasing and harvest rates 
are staying the same 

 
 



Age-at-harvest Data – how to 
interpret ? 

160  240 

144  216 

128  192 

112  168 

 

Year 

Age 

H1: The population is 
decreasing and harvest rates 
are staying the same 

H2: Abundance is constant 
and harvest rates are 
decreasing 
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Abundance 
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Age-at-harvest data 



Age-At-
Harvest 

Abundance 

Param
eters 

D
ata 

Encounter 
Histories 

Survival 

Recruitment Sampling 
Probability 

Age-at-harvest data supplemented 
with data from marked animals 



Step 1 of Integrated Population Modeling: 
Construct a population model that best matches 
your available data sources 
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Step 1 of Integrated Population Modeling: 
Construct a population model that best matches 
your available data sources 
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Step 1 of Integrated Population Modeling: 
Construct a population model that best matches 
your available data sources 

Too Complex – Not enough data to reliably 
estimate parameters 
 
 
Just right… 
 
 
Too Simple – Can’t “adequately” capture 
dynamics; e.g. decreasing survival because 
survival assumed constant 

R
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Step 1 of Integrated Population Modeling: 
Construct a population model that best matches 
available data sources 

Example 1: Minnesota black bears 



Step 1 of Integrated Population Modeling: 
Construct a population model that best matches 
available data sources 

Different types of auxiliary data often result in different 
model parameterizations 

Example: Mark-recapture-recovery data 

   Age 2 Age 3+ 
1iS 2iS

3iS

 Age 1 

if

1ih 2ih 3ih

   Harvest, 
Age 1    Harvest, 

Age 2    Harvest, 
Age 3+ 

Brownie type 
parameterization 



Step 1 of Integrated Population Modeling: 
Construct a population model that best matches 
available data sources 

Different types of auxiliary data often result in different 
model parameterizations Example: Radio telemetry 

   Age 2 Age 3+ 
1iS 2iS

3iS

 Age 1 

if

11 iS
21 iS 31 iS

   Nat M,  

Age 1 
   Harvest, 

Age 1    Nat M,  

Age 2 
   Harvest, 

Age 2 
 Nat M,  

Age 2 
   Harvest, 

Age 2 

1ir11 ir 2ir21 ir 2ir11 ir

Seber type parameterization 



Step 2: Fit the model  

MODEL 

Parameters 

Predicted age 
composition 

Predicted 
indices 

Predicted 
harvest 

Predicted 
tagging data 

Predicted ? 

Covariates 
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Step 2: Fit the model  

MODEL 

Parameters 

Predicted age 
composition 

Predicted 
indices 

Predicted 
removals 

Predicted 
tagging data 

Predicted ? 

Observed 
age 
composition 

Observed 
indices Observed ? 

Observed 
tagging data 

Observed 
removals 

L1 

L2 

L3 

L4 

L5 

Covariates Adjust to 
minimize 


i

iL



Estimation approaches 

1) Minimize an objective function (as with 
previous slide) 

• Sum of squares 
• χ2 = [Observed-Expected]/Expected 
• -Log likelihood (maximum likelihood) 
• -(Log likelihood + Log priors)  

(MAP – maximum a posteriori) 
 

 



Estimation approaches 

2) Bayesian inference 
• Markov chain Monte Carlo (simulating 

from joint posterior) 
• Incorporates prior beliefs about likely 

ranges of a parameter (though these can be 
“vague”) 

• Allows hierarchical modeling (models 
within models) 

 
 



Estimation: Plusses and minuses 

Direct optimization 
• Typically much simpler to code 
• Limitations on how the types of stochasticity 

considered 
Bayesian 
• Harder to debug 
• Easy to incorporate multiple layers of 

modeling (e.g. random effects).  Random 
effects really help when >8-10 years of data. 

 



Estimation: Other issues 

• Different data sources are typically on 
different scales – how to weight different 
components so that there on roughly the right 
scale?  Can we downweight data sources that 
we don’t believe in? 

 
 
 

Largely an unresolved problem that may 
require some subjective reasoning.  Iterative 
reweighting (in the context of MLE or MAP 
estimation) is one approach that tries to get 
around this issue. 



Software 

(1) Excel – “solver” may be able to handle 
minimization for simple problems 

Pros:  
• Most accessible  
• Interactive 
Cons:  
• Some data difficult to model (mark-recapture) 
• Poor numerical performance 
• Programming difficult to replicate 
 
 
 



Software 

(2) ADMB – AD Model Builder; de facto tool in 
fisheries assessments, freeware 

Pros:  
• Fast stable optimization for MLE, MAP, etc. 
• Variance/conf intervals are standard output 
• Has switches to turn on Bayesian 

inference/random effects 
Cons:  
• Pseudo-C++ coding needed, a little bit of a 

learning curve 
 
 
 



Software 

(3) R Programming environment; freeware 
Pros:  
• Lots of people are using it! 
• Transparent 
Cons:  
• Optimization slower, arguably less reliable 

than ADMB 
• Variance estimates usually take more work 
• Custom MCMC samplers often needed 
 
 
 



Software 

(4) WinBUGS, JAGS; freeware 
Pros:  
• Lots of people are using it! 
• Nice tools for Bayesian inference (pseudo-

code) 
Cons:  
• Quirky  
• Bit of a learning curve 
• Can be slow to fit 
 
 
 



A word on model testing 

Model testing is important for 
• Eliminating programming errors (bugs) 
• Ensuring that you’re actually able to estimate 

all the parameters in your model 
 
 
 

•Expected value data (analytic-numeric) 
you should be able to get back the same 
parameter values you used to generate data 
•Simulated data – get at estimator properties 
(bias, confidence interval coverage, MSE, 
etc.) 



A word on model testing 

Signs that you’re not able to estimate all  
parameters with the data you have: 
• Variance estimates that are off the wall (Survival 

estimated at 1.00 with an SE of 100) 
• Warnings that Hessian is ‘singular’ or ‘not 

positive-definite’ 
• Bayesian posteriors similar to prior distributions 
• Multiple modes in Bayesian posteriors 
 
 
 



Questions before I go into a few examples? 



Example 1: Model developed for 
Pennsylvania black bear 

• Data available: Age-at-harvest 
• Mark-recovery data 
• Some reproductive biology, but not used 

during modeling 
 Conn, P. B., D. R. Diefenbach, J. L. Laake, M. A. Ternent, and G. C. White. 2008. 

Bayesian analysis of wildlife age-at-harvest data. Biometrics 64:1170-1177. 
 
Conn, P.B., G.C. White, and J.L. Laake.  2009.  Simulation performance of  Bayesian 
Estimators of Abundance Employing Age-at-harvest and mark-recovery data.  In  
Thomson, DL and Cooch, EG, editors.  Modeling Demographic Processes in Marked 
Populations.  Springer, New York. 



Model for age-at-harvest data  
Notation 

   Harvest by time and age 
  Abundance immediately prior to harvest 
  Survival 
  Probability of recovery  
  Recruitment process intensity 

ijC
ijN
ijS

ijf
ijh

[

[X|Y]    The conditional distribution of X given Y 
BOLD    Vector (collection) of parameters 

 



Model for age-at-harvest data 
Population Dynamics Submodel 

 
11N 12N 

AN1
Condition on initial 
abundance vector, survival 
and recruitment rates 



Population Dynamics Submodel – 2nd Year 

 
11N

Model for age-at-harvest data 



1,2 AN22N 
AN221N

12N AN111N Survival 
(Binomial?) 
Recruitment 
(Poisson?) 



Model for age-at-harvest data 
Population Dynamics Submodel – All Years 

 
11N

21N

31N


1,1YN

1YN

12N

22N

32N


2,1YN

2YN

 AN1

AN2

AN3


AYN ,1

YAN











1,2 AN

1,3 AN


1,1  AYN

1, AYN



Model for age-at-harvest data 
Observation Process Submodel 

 11N

21N


1,1YN

1YN

12N

22N


2,1YN

2YN

 AN1

1,22  AA NN


1,1,1   AYAY NN

1,  AYYA NN









11C

21C

1,1YC

11C

22C

2,1YC

AC1

AC2

AYC ,1

1YC 2YC YAC

1,1 AN

1,2 AN


1,1  AYN

1, AYN

1,1 AC

1,2 AC

1,1  AYC

1, AYC

Typical 
choice for 
[Cij | Ni-1,j-1]: 
Binomial  



Model for age-at-harvest data 
The joint likelihood for age-at-harvest data and 
abundance after the first year can thus be given by 

where 



Model for age-at-harvest data 

ISSUE 1:  Parameters NOT IDENTIFIABLE 
without extra information!!!! 

SOLUTION:  Following Gove et al. (2002), I 
suggest basic inference on the joint likelihood 

  



Model for age-at-harvest data 

ISSUE 2:  Maximum likelihood estimation 
prohibitively difficult 

SOLUTION: Specify prior distributions 
(possibly noninformative) and conduct a 
Bayesian analysis. 

  



Model for age-at-harvest data 

Model Assumptions 

• No aging error 

• Animals behave independently  

• Demographic parameters are the same for all 
individuals in a given age- and sex-class for a given 
time interval 

• No Immigration/Emigration 

• Auxiliary data not included in age-at-harvest matrix  



Simulation Testing 
3 Simulation modules - All assumed mark-

recovery data were available to help model 
harvest process 

A) Response surface design to quantify estimator 
performance under a number of biological scenarios 
when all model assumptions are met. 

B) Estimator performance when aging errors occur 

C) Estimator performance when data from marked animals 
included in both portions of likelihood 



Simulation Testing 
Bayesian Implementation Notes 

• MCMC via the Metropolis-Hastings within 
Gibbs hybrid update in C++ 

• Noninformative priors used in all cases 

• Markov chains mixed poorly; if Gelman-Rubin 
statistics indicated convergence, last half of 2 
chains of length 1 million combined to generate a 
sample from the posterior 

• Posterior mode used as point estimator 

http://images.google.com/imgres?imgurl=dot.ci.tucson.az.us/planning/CleanAirFiesta/Computer.jpg&imgrefurl=http://dot.ci.tucson.az.us/planning/cleanairfiesta.html&h=197&w=196&prev=/images?q=computer&svnum=10&hl=en&lr=&ie=UTF-8&oe=UTF-8


Simulation Testing 
Module 1: Large scale performance 

Simulations varied by 

•Estimation model complexity 

•Number of marked releases 

•Study duration  

•Age classes 

•Initial abundance 
 

•Survival  

•Reporting rate 

•Population trend 
 

http://images.google.com/imgres?imgurl=dot.ci.tucson.az.us/planning/CleanAirFiesta/Computer.jpg&imgrefurl=http://dot.ci.tucson.az.us/planning/cleanairfiesta.html&h=197&w=196&prev=/images?q=computer&svnum=10&hl=en&lr=&ie=UTF-8&oe=UTF-8


Simulation Testing 
Module 1: Large scale performance 

• Percent relative bias on abundance = 1.8 (SE 0.4) 

• Absolute bias decreased with sample size 

• Credible interval coverage close to “nominal” 

• CV on abundance predicted to range from 0.016 
to 0.24 

http://images.google.com/imgres?imgurl=dot.ci.tucson.az.us/planning/CleanAirFiesta/Computer.jpg&imgrefurl=http://dot.ci.tucson.az.us/planning/cleanairfiesta.html&h=197&w=196&prev=/images?q=computer&svnum=10&hl=en&lr=&ie=UTF-8&oe=UTF-8


Simulation Testing 
Module 2: Performance under aging error 

No systematic differences between model 
performance measure when aging errors were 
permitted. 

True Age = 1 True Age = 3 True Age = 5 



Simulation Testing 
Module 3: Performance when likelihoods 
not independent 



Simulation Testing 
Summary 
• Minimal (positive) bias, good coverage, high precision 
when all assumptions are met  

• Robust to errors in age determination, at least with aging 
error models considered here 

• Caution: measures of precision may be overly optimistic 
when data from marked animals included in both portions of 
the likelihood, especially when model complexity is low or 
when the number of marked individuals make up a 
substantial portion of the population   



Pennsylvania Black Bear Example 

Photo: Duane Diefenbach 

By MICHAEL RUBINKAM, 
Associated Press Writer Thu 
Mar 15, 5:58 PM ET  
MILFORD, Pa. - Mark 
Ternent squeezes his bulky 
frame into the narrow 
opening of a bear den and 
shines a flashlight into the 
eyes of a 200-pound female..  

Biologists enter dens to manage bears  



Pennsylvania Black Bear Example 
• Obtained age-specific marking and 

harvest records for females for 1986-
1999 (40-220 marked/year, 600-1500 
harvested/year) 

• Compiled mark-recovery encounter 
histories for females initially captured 
March-November 

• Diffuse Priors 
• Goal: Estimate abundance, survival, 

recruitment, recovery rate for female 
portion of population (November to 
November) 

Photo: Duane Diefenbach 

Photo: Duane Diefenbach 



Pennsylvania Black Bear Example 
 
Compared DIC of 4 a priori models for 

population dynamics 
 
• Recruitment rate (log link): 

   f(•) or f(year) 
• Survival, recovery probability (logit link): 
  S(age)h(age) or S(age+year)h(age+year) 

  
All models included overdispersion random effects on 
the logit of recovery probability (Barry et al. 2003):  

 

Photo: Duane Diefenbach 



Pennsylvania Black Bear Example 

Model ΔDIC pB 
S(a+t)h(a+t)f(t) 0.0 0.67 
S(a+t)h(a+t)f(dot) 6.0 0.58 
S(a)h(a)f(t) 28.9 0.50 
S(a)h(a)f(dot) 34.1 0.49 
 

Model Selection Results 



Pennsylvania Black Bear Example 

A. Bayesian 
Model 
 
 
 
 

B. Lincoln-
Petersen 



Pennsylvania Black Bear Example 



Pennsylvania Black Bear Example 
Summary 

1. Joint age-at-harvest model produces estimates which 
are much more precise than single season approaches 
(e.g. L-P).  Thus, less sampling effort needed.  Also, 
greater biological realism because they are required 
to be internally consistent. 

2. Caution needed when interpreting final estimates 
when temporary emigration a possibility 

3. Further evaluation of model assumptions needed (e.g. 
tag loss, pre-harvest mortality following marking) 



Example II: Integrated Population Modeling of 
Black Bears in Minnesota: Implications for 

Monitoring and Management 

Joint work with John Fieberg, Dave Garshelis, Karen Noyce 
– MN Dept. of Natural Resources 

Kyle Shertzer, Paul Conn – National Marine Fisheries 
Service 
 

 

May 2011 

 

 
These slides 
pilfered from J. 
Fieberg 



Outline 

• Data sources in MN 
• Integrated population modeling approach 
• Simulation results 
• MN black bears 

Fieberg JR, Shertzer KW, Conn PB, Noyce KV, Garshelis DL, 2010 
Integrated Population Modeling of Black Bears in Minnesota: 
Implications for Monitoring and Management. PLoS ONE 5(8): e12114. 
doi:10.1371/journal.pone.0012114 



Importance of Harvest Data 

• Relatively inexpensive to collect 
• Can be obtained over large geographical 

areas 
 

Question:  are “large harvests” due to: 
– High population size (N), average harvest rates 
– Average N, with above average harvest rates 

 

Key:  age data and temporal covariates  
 

 



Year/Age 0.5 1.5 2.5 3.5 4.5 5.5 6.5 

1989 7 478 535 143 221 103 84 

1990 6 607 545 369 132 175 106 

1991 10 432 649 275 249 64 78 

1992 28 649 609 598 288 268 84 

1993 17 1001 580 318 286 175 152 

1994 7 569 642 297 157 171 94 

1995 29 1233 800 703 390 231 296 

1996 5 502 524 228 200 83 55 

1997 17 721 849 563 193 176 112 

1998 35 1394 722 594 435 174 179 

1999 48 903 1054 365 312 284 100 

2000 44 1216 682 666 244 215 197 

2001 61 1274 1446 468 505 186 172 

2002 20 603 404 301 90 149 46 

2003 76 811 1156 432 351 114 168 

Year/Age 0.5 1.5 2.5 3.5 4.5 5.5 6.5 

1989 7 478 535 143 221 103 84 

1990 6 607 545 369 132 175 106 

1991 10 432 649 275 249 64 78 

1992 28 649 609 598 288 268 84 

1993 17 1001 580 318 286 175 152 

1994 7 569 642 297 157 171 94 

1995 29 1233 800 703 390 231 296 

1996 5 502 524 228 200 83 55 

1997 17 721 849 563 193 176 112 

1998 35 1394 722 594 435 174 179 

1999 48 903 1054 365 312 284 100 

2000 44 1216 682 666 244 215 197 

2001 61 1274 1446 468 505 186 172 

2002 20 603 404 301 90 149 46 

2003 76 811 1156 432 351 114 168 

Example Harvest Matrix 

Year/Age 0.5 1.5 2.5 3.5 4.5 5.5 6.5 

1989 7 478 535 143 221 103 84 

1990 6 607 545 369 132 175 106 

1991 10 432 649 275 249 64 78 

1992 28 649 609 598 288 268 84 

1993 17 1001 580 318 286 175 152 

1994 7 569 642 297 157 171 94 

1995 29 1233 800 703 390 231 296 

1996 5 502 524 228 200 83 55 

1997 17 721 849 563 193 176 112 

1998 35 1394 722 594 435 174 179 

1999 48 903 1054 365 312 284 100 

2000 44 1216 682 666 244 215 197 

2001 61 1274 1446 468 505 186 172 

2002 20 603 404 301 90 149 46 

2003 76 811 1156 432 351 114 168 



Data Sources for Model 
• Harvest records since 1980  

– Total harvest from check stations 
– Teeth for aging (~70% compliance) 

• Temporal covariates 
– Natural food availability index 
– Measures of hunter effort 

• Population estimates from statewide mark-
recapture studies (1991, 1997, 2002, 2008) 
 
 



Additional information 
• Telemetry data (3 study sites) 

– Mortality rates (hunting, non-hunting)   

• Estimates of cub survival, litter size from den checks 

 



Basic approach 
• Specify deterministic population model 

– Natural mortality rates  

– Harvest rates  

• Estimate age distribution in 1980, cubs in 
years 1981-2008. 

• Minimizing a 2 objective function: 

 





No. of cubs (1981-2007) 

Initial Abundances (1980)   

Population Dynamics Submodel 

11N

21N

31N


1,1YN

1YN

12N

22N

32N


2,1YN

2YN

 AN1

AN2

AN3


AYN ,1

YAN











1,2 AN

1,3 AN


1,1  AYN

1, AYN

Ages (cub to 10+) 

Years 1980-2008 

Fixed: cub survival, female 
yearling survival 
 
Estimated parameters: 
- Male yearling survival 
- Adult (age 2+) survival by sex 
 

Harvest rate model:  
N(yr,sex,age)-> H(age,sex,yr)  
 



Two Harvest models 
• H(a,s,f,e) : age, sex, food availability, hunting 

effort = “Food-Effort model” 
– Recover relationships observed in telemetry data? 

 
• H(a,s,yr):  age, sex, year effects = “Year 

model” 
– 29 yr parameters… 

push limits of the data… 



Mark-Recapture Estimates 

• Add a penalty term to 2 objective function : 
 

    o
 + w*[(Nmodel-Ntet)/SE(Ntet)]2   

 
• Tried weights, w, of 0, 1, and 200 

 
• Strike a balance (fit age-at-harvest, M-R) 

 



Questions 

• How robust is the modeling approach?  
– Food-Effort model versus Year model? 

• How useful are the M-R data?   
• Effect of weighting? 
 
…simulations  



Simulation Scenarios 
Looked at several forms of model mis-specification  
• Stochastic survival/harvest 
• Trends in harvest/survival rates 
• Reporting errors (yearlings under-reported) 
• Food by sex interaction 
• “Kitchen sink” (all of the above) 
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Some conclusions 
• Estimates of abundance often biased 
• Trends robust to model mis-specification 
• Year model sometimes unstable, imprecise at 

end of time series 
• M-R data  

– Helped to get scale right   
– Weighting influenced MSE for trends 

 
 



…MN black bear data 
(1980-2008) 

 • Fit both harvest models 
 

• With and without mark-recapture data. 



Application to MN black bears 

 
 



Yearly transitions 



Harvest rates 



Harvest Rates 

 Effects of food and hunting effort agree with telemetry 
data 

 Non-linear age trend 
 May reflect model mis-specificaiton 



Recruitment dynamics 



Harvest Model Conclusions 

• Absolute abundance estimates may be 
biased due to model mis-specification 

• Robust trend estimates  
– But may require data explaining year-to-year 

variability in harvest 
• With M-R data…robust and viable 

population monitoring program 
 



  Future directions   
   • Model recruitment dynamics 

• Incorporate random effects 
– Allow more flexibility in Food-Effort model 
– Borrow strength in latter years with less information 

(Year model) 
• Explore methods for estimating uncertainty  

– bootstrap, cross-validation, large sample asymptotics 
 
 



Complex…. 
 
Is all this 
necessary? 



Alternatives? 
• Downing reconstruction  

– Assumes constant ratio of hunting to non-
hunting mortality 

– Constant harvest rates for last 2 age classes 
– Collapsed to yearlings, age 2, age 3, age 4+ 

• Other reconstruction approaches 
 



Models Estimates and Downing 
Reconstruction 

1980 1985 1990 1995 2000 2005

10

15

20

25

30

N̂
 (t

ho
us

an
ds

)

H (a ,s ,f ,e ; w 0)

1980 1985 1990 1995 2000 2005

10

15

20

25

30

H (a,s ,f ,e ; w 1)

1980 1985 1990 1995 2000 2005

10

15

20

25

30

H (a ,s,f ,e; w 200)

1980 1985 1990 1995 2000 2005

6

8

10

12

14

16

Dowing (4 ages classes)

1980 1985 1990 1995 2000 2005

-0.2

-0.1

0.0

0.1

0.2

0.3

H (a ,s ,f ,e ; w 0)

lo
g

^ t
lo

g
N̂

t
1

lo
g

N̂ t

1980 1985 1990 1995 2000 2005

-0.2

-0.1

0.0

0.1

0.2

0.3

H (a,s ,f ,e ; w 1)

1980 1985 1990 1995 2000 2005

-0.2

-0.1

0.0

0.1

0.2

0.3

H (a ,s,f ,e; w 200)

1980 1985 1990 1995 2000 2005

-0.2

-0.1

0.0

0.1

0.2

0.3

Dowing (4 ages classes)



Models versus Downing Reconstruction 

 Large scale trends similar 
 Different  assumptions and methods (so, slightly different trends). 
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Tradeoffs 
• Simplicity (Downing +++) 

 
• Flexibility, ability to incorporate additional 

data (Model +++) 
 

• Estimates for recent years (Model +) 
 

• Test hypotheses (Model +++) 



Summary: MN black bears 

• Integrated population modeling likely will 
be a useful tool for monitoring black bears 
in MN 

• Simulation exercises were critical for 
developing intuition on what model 
structures provided useful inferences 
(models with freely time-varying parameter 
stank) 
 



The importance of power analysis 

• I hope you don’t come away from this 
workshop thinking that all you need to do is 
collect a little bit of extra data to use these 
methods 

• A better question is “how MUCH more data 
do I need to collect?” (i.e. how many 
animals to I need to put radio-collars on, 
etc.) 



The importance of power analysis 

• Power analysis: a simulation or expected 
value data exercise that relates necessary 
sample sizes to a desired outcome (e.g. a 
coefficient of variation on estimated 
abundance = 0.2) 



Example: Colorado Power Analysis 

1. Would joint modeling with age-at-harvest 
data and data from marked individuals be a 
viable means of monitoring black bear 
populations in CO?? 

2. If so, how long would studies need to be and 
how many individuals would need to be 
marked per year?  

Questions 



Colorado Power Analysis 

• Focused on radio telemetry studies as these give 
the most information per animal marked 

• Focused on females (again) 

• Focused on estimation of population trend rather 
than absolute abundance  

 



Colorado Power Analysis 
Simulating Data 

Individual based model adapted from White, Gill, and 
Beck (unpublished manuscript) allowing for individual 
heterogeneity and a Markov model for cub status. 
• Adult females (age 5+) breed every other year 

• # female cubs per adult female = 0-3, with 
probabilities determined by Beck (1991)  

• Heterogeneity, covariance between initial 
marking probability and recovery rate 
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Colorado Power Analysis 
Simulating Data 

Three possible population models: 

Model A1: Model A2: Model A3: 

E(h) = 0.06, 0.05 

λ = 0.998 

E(h) = 0.08, 0.06 

λ = 0.981 

E(h) = 0.104, 0.085 

λ = 0.958 



Colorado Power Analysis 
Simulation Inputs: 

RSD1: No Censoring 
• Number of years = 5 or 10 

• Population size (250 or 500) 

• Number of animals marked per year (10, 20, or 30) 

• Correlation between recovery and initial marking 
probability = 0.0 or 0.5 

•λ = 0.998, 0.981, 0.958 

   



Colorado Power Analysis 
Simulation Inputs: 

RSD2: Censoring 
• Number of years = 10 

• Population size (250 or 500) 

• Number of animals marked per year (10, 20, or 30) 

• Correlation between recovery and initial marking 
probability = 0.0 

•λ = 0.998, 0.981, 0.958 

   



Colorado Power Analysis 

Estimation Model 

h fixed to zero for cubs and constant over 
remaining age classes  



Colorado Power Analysis 
Response Variables 

For each simulation input combination, I performed 5 
simulations.  Conditional on convergence, I recorded 
the following with respect to     :  

• Percent relative bias (% Bias) 

• 90% Bayesian HPD interval coverage 

• Coefficient of variation (CV) 

• Whether or not 0 was within 90% HPD interval 

1
N



Colorado Power Analysis 

Results: Convergence rates 

Years Design Expected Releases 
  10 20 30 

5 RSD1 0.55 0.87 0.97 
10 RSD1 1.00 0.98 1.00 
10 RSD2 0.90 1.00 1.00 

 



Colorado Power Analysis 

Results: Power to detect population declines 
5 year studies: Little to no power to “detect” 
population declines (10-35% for λ=0.958). 

10 year studies: 
Power depends on λ 
and the number of 
expected releases per 
year 



Colorado Power Analysis 

Results: Coverage, %Bias, CV 
• Coverage close to 
“nominal” over all 
simulation inputs 

• %Bias of                                   
= -1.6 (SE 0.2). 

• CV on λ was predicted to 
be 2% to 3% for 10 year 
studies (results of RSD2)  

1 1
N N/ 



Colorado Power Analysis 
Summary 
• “Power” to detect population 
trends reasonable for 10 year 
studies; however “power” not 
the whole story. 
• Apparent negative bias in trend estimator would favor 
conservative management if not taken into account. 

• Abundance, correlation in marking and recovery 
probabilities not important factors for trend estimation.  
 

91% 



Final Thoughts 

•Hidden process/state 
space/integrated population modeling 
attempts to simultaneously make use 
of ALL available data 

•Potential for permitting relationships 
among parameters and even 
incorporating individual level 
random effects (fitness?, tradeoffs?, 
density dependence?) 

  



Final Thoughts 

If you’re serious about implementing such a 
sampling program/modeling approach the 
biggest bang for your buck is probably  

(1) Visiting your agency biometrician 

(2)  Consult/contract out to a recently 
graduated quantitative fisheries or 
wildlife masters/PhD student that will 
still work for Top Ramen 

(3) Consult/contract out with a higher paid 
consultant 



Questions? 


