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Goals of workshop

In the next 1.5 hours, I hope to (in no particular order):

1. Increase your awareness of the advantages
AND limitations of integrated population
models

2. Convey to you what the heck an “integrated
population model” is

3. Guide you through different types of
procedures for fitting integrated population
models to available sources of bear data
(Bayesian and otherwise)



Goals of workshop

In the next 1.5 hours, I hope to (in no particular order):

4

Guide you through different types of
procedures for fitting integrated population
models to available sources of bear data

Introduce you to available software options

Give you some intuition as to whether your
results are going to be worth a damn

Provide a few examples of integrated
population models in use



Goals of workshop

In the next 1.5 hours, I hope to (in no particular order):

8. Describe how power analysis can (and
should!) be used to help evaluate how much
extra data you’re going to have to collect

9. Take a few questions



What this workshop 1s not

This 1sn’t a self-affirmation workshop. Most of you
probably don’t have sufficient data to reliably apply these
approaches (at least right now).

@racadab@




What the heck is an integrated
population model?

It’s a term that my coauthors and I (Fieberg et al. 2010,
PLoS ONE) invented to get more literature citations.

*A different name for a fisheries stock assessment model
fitted to wildlife data

*[f using a Bayesian /hierarchical modeling framework,
other names could be used (state space model, hidden
process model)

*Use available data to estimate parameters of a very
simple population model



Data requirements for some common
fisheries stock assessment models

Age Natural
Model type structure Removals Indices Mortality Biology
Statistical catch-age X X X X X
Catch free X X X X
Stock reduction X X X X
Tuned VPA X X X X
VPA/Cohort analysis X X X
Surplus production X X

»Haddon, 2001. Modelling and Quantitative Methods in Fisheries
*Quinn and Deriso, 1999. Quantitative Fish Dynamics



Outputs for some common fisheries stock
assessment models

Mgmt.
Abundance Fishing* reference

Model type at age Biomass mortality Recruitment*  points
Statistical catch-age X X X X X
Catch free X X
Stock reduction X X X X X
Tuned VPA X X X X X
VPA/Cohort analysis X X X X
Surplus production X X X

»Haddon, 2001. Modelling and Quantitative Methods in Fisheries
*Quinn and Deriso, 1999. Quantitative Fish Dynamics



Possible data sources: Bear populations

*Age-at-harvest

*Reporting surveys

*Indices of abundance
*Mark-recapture-recovery data

*Telemetry data

*Reproductive ecology studies
*Meta-analysis

*Covariates thought to influence
survival/harvest (hunter effort, forage index)



Age-at-harvest Data

Data commonly obtained
for fish and wildlife
populations

 Hunter check stations
* Parts collection surveys

 Fishing boat surveys

Observed age-at-harvest

matrix
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Age-at-harvest Data
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Age-at-harvest Data — how to
interpret ?

Age >
§ 160 240
T 144 216
1 128 192

112 168



Age-at-harvest Data — how to

interpret ? o
H1: The population 1s
decreasing and harvest rates
are staying the same
Age > ying
§ 160 240
T 144 216
l 128 192
112 168



Age-at-harvest Data — how to

interpret ?
Age >
§ 160 240
T 144 216
l 128 192
112 168

H2: Abundance 1s constant
and harvest rates are
decreasing

Harvest Rate

0.22

0.17

0.12

—

Year




Age-at-harvest data

Abundance Survival
Recruitment Sampling
, Probability
/ /
Age-At-
Harvest
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Age-at-harvest data supplemented
with data from marked animals

0
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Recruitment Sampling @
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Step 1 of Integrated Population Modeling:

Construct a population model that best matches
your available data sources
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Step 1 of Integrated Population Modeling:
Construct a population model that best matches
your available data sources
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Step 1 of Integrated Population Modeling:
Construct a population model that best matches
your available data sources

Too Complex — Not enough data to reliably
estimate parameters

Just right. ..

Realism

Too Simple — Can’t “adequately” capture
dynamics; e.g. decreasing survival because
survival assumed constant

UoISI0d1J



Step 1 of Integrated Population Modeling:
Construct a population model that best matches
available data sources

Example 1: Minnesota black bears

Tirme O (January )
initialize model

Huniting Increment
l season, yeart Ume Step

|_ Sept. / Oct m
l

Matural mortality Jv l Time
v

iarch: Bears

Calculate Calculate January:
emerge from pre-harvest  post-hunting Determine #
dens abundance, abundance, of new cubs
subfracting subtracting out

outnatural  harvest

maortalies marality



Step 1 of Integrated Population Modeling:
Construct a population model that best matches
available data sources

Different types of auxiliary data often result in different
model parameterizations

Example: Mark-recapture-recovery data

Harvest, Harvest, Harvest,
Age 1 Age 2 Age 3+
hil hi2 Si3+ hi3
Sil Si2
Age 1 » Age?2 > Age 3+ Brownie type
— i parameterization

fi



Step 1 of Integrated Population Modeling:
Construct a population model that best matches
available data sources

Different types of auxiliary data often result in different

model parameterizations Example: Radio telemetry

Nat M, Harvest, Nat M, Harvest, Nat M, Harvest,
fes Age 1 Age? Age 2 Age? Age 2
Sil Sz'2
Age 1 » Age?2 " Age 3+
—~— /
/; Seber type parameterization




Step 2: Fit the model

Predicted
harvest

Covariates Parameters
Predicted age
composition
MODEL
Predicted
indices

Predicted ?

Predicted
tagging data




Step 2: Fit the model

Parameters

Predicted age
composition

Observed
age
composition

Predicted
removals

MODEL

Predicted
indices

Observed
removals

N/

Predicted
tagging data

Observed
indices

Predicted ?

Observed ?

Observed
tagging data

N/
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Step 2: Fit the model

Parameters

Predicted age
composition

Observed
age
composition

Predicted
removals

MODEL

Predicted
indices

Observed
removals

N/

Predicted
tagging data

Observed
indices

Predicted ?

Observed ?

Observed
tagging data

N/

v
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Estimation approaches

1) Minimize an objective function (as with
previous slide)

e Sum of squares

« v> = [Observed-Expected]/Expected

» -Log likelithood (maximum likelihood)
* -(Log likelihood + Log priors)

(MAP — maximum a posteriori)



Estimation approaches

2) Bayesian inference

* Markov chain Monte Carlo (simulating
from joint posterior)

 Incorporates prior beliefs about likely
ranges of a parameter (though these can be
“vague’)

* Allows hierarchical modeling (models
within models)



Estimation: Plusses and minuses

Direct optimization
* Typically much simpler to code

« Limitations on how the types of stochasticity
considered

Bayesian
» Harder to debug

» Easy to incorporate multiple layers of
modeling (e.g. random effects). Random
effects really help when >8-10 years of data.



Estimation: Other 1ssues

» Different data sources are typically on
different scales — how to weight different
components so that there on roughly the right

scale? Can we downweight data sources that
we don’t believe in?

Largely an unresolved problem that may

:> require some subjective reasoning. Iterative
reweighting (in the context of MLE or MAP
estimation) 1s one approach that tries to get
around this 1ssue.




Software

(1) Excel — “solver” may be able to handle
minimization for simple problems

Pros:

* Most accessible

 Interactive

Cons:

* Some data difficult to model (mark-recapture)
e Poor numerical performance

* Programming difficult to replicate



Software

(2) ADMB — AD Model Builder; de facto tool in
fisheries assessments, freeware

Pros:
* Fast stable optimization for MLE, MAP, etc.
* Variance/conf intervals are standard output

* Has switches to turn on Bayesian
inference/random effects

Cons:

* Pseudo-C++ coding needed, a little bit of a
learning curve



Software

(3) R Programming environment; freeware
Pros:

* Lots of people are using it!

* Transparent

Cons:

* Optimization slower, arguably less reliable
than ADMB

e Variance estimates usually take more work

e Custom MCMC samplers often needed



Software

(4) WinBUGS, JAGS; freeware
Pros:
* Lots of people are using 1t!

* Nice tools for Bayesian inference (pseudo-
code)

Cons:
* Quirky
e Bit of a learning curve

 Can be slow to fit



A word on model testing

Model testing i1s important for
* Eliminating programming errors (bugs)

* Ensuring that you’re actually able to estimate
all the parameters 1in your model

*Expected value data (analytic-numeric)
you should be able to get back the same

:> parameter values you used to generate data
*Simulated data — get at estimator properties
(bias, confidence interval coverage, MSE,
etc.)




A word on model testing

Signs that you’re not able to estimate all
parameters with the data you have:

* Variance estimates that are off the wall (Survival
estimated at 1.00 with an SE of 100)

 Warnings that Hessian 1s ‘singular’ or ‘not
positive-definite’

« Bayesian posteriors similar to prior distributions

* Multiple modes 1n Bayesian posteriors



Questions before I go 1nto a few examples?



Example 1: Model developed for
Pennsylvanmia black bear

» Data available: Age-at-harvest
* Mark-recovery data

e Some reproductive biology, but not used
during modeling

Conn, P. B., D. R. Diefenbach, J. L. Laake, M. A. Ternent, and G. C. White. 2008.
Bayesian analysis of wildlife age-at-harvest data. Biometrics 64:1170-1177.

Conn, P.B., G.C. White, and J.L. Laake. 2009. Simulation performance of Bayesian
Estimators of Abundance Employing Age-at-harvest and mark-recovery data. In
Thomson, DL and Cooch, EG, editors. Modeling Demographic Processes in Marked
Populations. Springer, New York.



Model for age-at-harvest data

Notation
Cij  Harvest by time and age
Nij  Abundance immediately prior to harvest
Sij Survival
hij  Probability of recovery
fii  Recruitment process intensity
[X]Y] The conditional distribution of X given Y

BOLD Vector (collection) of parameters



Model for age-at-harvest data

Population Dynamics Submodel

Condition on initial
abundance vector, survival
and recruitment rates

N N 770 Ny



Model for age-at-harvest data

Population Dynamics Submodel — 2™ Year

Survival

N N o Ny (Binomial?)
\ \ Recruitment
o (Poisson?)
Ny Ny Ny 4 N2,A+1
(No.INj..f7..S1.] = \ bu] X
! bH]
f'\zl‘Nl-rfl']‘




Model for age-at-harvest data

Population Dynamics Submodel — All Years

N11 le **e NIA

N N
Ny, N, e N, ., Ny s
. N IN|IN71..S.f] =
Ny, N3, e N, N Y—1

NY—I,I NY—1,2 ** NY—I,A NY—I,A+1

. ~N

N Y1 N Y2 ** N YA N Y. A+l



Model for age-at-harvest data

Observation Process Submodel
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Model for age-at-harvest data

The joint likelihood for age-at-harvest data and
abundance after the first year can thus be given by

Ln_t;f*—nf—.i':!n,rt.'f-.uz‘ — [Cu I\”I\Il S-. 111I t]
= [ ; Ni., S, f]

where

Y
[C|IN,h| = [C14|Nia,hia] H [Cia|Nia + N; 441, hial x
=2

.

—1

Y
IT11CN

i=1 1

e,
|



Model for age-at-harvest data

ISSUE 1: Parameters NOT IDENTIFIABLE
without extra information!!!!

E

SOLUTION: Following Gove et al. (2002), I
suggest basic inference on the joint likelithood

L=1L  x L

age—at—harves auxiliary



Model for age-at-harvest data

ISSUE 2: Maximum likelihood estimation
prohibitively difficult

E

SOLUTION: Specify prior distributions
(possibly noninformative) and conduct a
Bayesian analysis.




Model for age-at-harvest data

Model Assumptions

* No aging error
e Animals behave independently

* Demographic parameters are the same for all
individuals 1n a given age- and sex-class for a given
time 1nterval

* No Immigration/Emigration

» Auxiliary data not included in age-at-harvest matrix



Simulation Testing

3 Simulation modules - All assumed mark-
recovery data were available to help model
harvest process

A) Response surface design to quantify estimator
performance under a number of biological scenarios
when all model assumptions are met.

B) Estimator performance when aging errors occur

C) Estimator performance when data from marked animals
included in both portions of likelihood



Simulation Testing

Bayesian Implementation Notes

« MCMC via the Metropolis-Hastings within
Gibbs hybrid update in C++

* Noninformative priors used 1n all cases

e Markov chains mixed poorly; 1f Gelman-Rubin
statistics indicated convergence, last half of 2
chains of length 1 million combined to generate a
sample from the posterior

* Posterior mode used as point estimator
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Simulation Testing

Module 1: Large scale performance
Simulations varied by
eEstimation model complexity

*Number of marked releases

*Study duration *Survival
*Age classes *Reporting rate

e[/nitial abundance *Population trend
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Simulation Testing

Module 1: Large scale performance

 Percent relative bias on abundance = 1.8 (SE 0.4)
» Absolute bias decreased with sample size
 Credible interval coverage close to “nominal”

e CV on abundance predicted to range from 0.016
to 0.24
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Simulation Testing

Module 2: Performance under aging error

No systematic differences between model
performance measure when aging errors were
permitted.

True Age =1 True Age =3 True Age =5



Simulation Testing

Module 3: Performance when likelihoods
not independent

1
0.
0
<
5 0.8
>
o
O 0.7}
O
2 0.6}
o
S
0.5
0.4

()

mme - - -\\ ---------------
=L \\\\\\\\\\\\\\\\\\\\\\\\\\\\\
\\\\\\\\\\\\\
\\\\\\\\\\\\\\\\\\\
\\\\\\\\\
RanEalLIL TT T TP, -
o\’\
’\O\ - .. R=200’ Ind=1
\
*° —R=400, Ind=1
L4
’\O\ ||||||| R=200’ Ind=0 i
N
’\O\ ||||| R=400’ Ind=0
N
Il ‘ |

Model




Simulation Testing

Summary

« Minimal (positive) bias, good coverage, high precision
when all assumptions are met

* Robust to errors in age determination, at least with aging
error models considered here

 Caution: measures of precision may be overly optimistic
when data from marked animals included in both portions of
the likelihood, especially when model complexity is low or
when the number of marked individuals make up a
substantial portion of the population



Pennsylvania Black Bear Example

Biologists enter dens to manage bears

By MICHAEL RUBINKAM,
Associated Press Writer

MILFORD, Pa. - Mark
Ternent squeezes his bulky
frame into the narrow
opening of a bear den and
shines a flashlight into the

eyes of a 200-pound female..

Photo: Duane Diefenbach



Pennsylvania Black Bear Example

* Obtained age-specific marking and
harvest records for females for 1986-
1999 (40-220 marked/year, 600-1500

harvested/year)

* Compiled mark-recovery encounter
histories for females 1nitially captured
March-November

e Diffuse Priors

* Goal: Estimate abundance, survival,
recruitment, recovery rate for female
portion of population (November to
November)

Photo: Duane Diefenbach

Photo: Duane Diefenbach



Pennsylvania Black Bear Example

Compared DIC of 4 a priori models for
population dynamics

e Recruitment rate (log link):

f(*) or f(year) Photo: Duane Diefenbach
e Survival, recovery probability (logit link):

S(age)h(age) or S(age+year)h(aget+year)

All models included overdispersion random effects on
the logit of recovery probability (Barry et al. 2003):

€;; ~ Normal(0, 1/ )



Pennsylvania Black Bear Example

Model Selection Results

Model
S(a+t)h(a+t)f(t)
S(a+t)h(a+t)f(dot)
S(a)h(a)f(t)
S(a)h(a)f(dot)

ADIC
0.0
6.0

28.9

34.1

PB
0.67

0.58
0.50
0.49




Pennsylvania Black Bear Example
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Pennsylvania Black Bear Example

. A. Cubs

U

E. Age 4

1986 1990 1994 1998
Year

B. Yearlings

%%%*%%%{%%%%+
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D. Age 3
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F. Age 5+

1986 1990 1994 1998
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Yea
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Pennsylvania Black Bear Example

Summary

.

Joint age-at-harvest model produces estimates which
are much more precise than single season approaches
(e.g. L-P). Thus, less sampling effort needed. Also,
greater biological realism because they are required
to be internally consistent.

Caution needed when interpreting final estimates
when temporary emigration a possibility

Further evaluation of model assumptions needed (e.g.
tag loss, pre-harvest mortality following marking)



Example II: Integrated Population Modeling of
Black Bears in Minnesota: Implications for
Monitoring and Management

Joint work with John Fieberg, Dave Garshelis, Karen Noyce
— MN Dept. of Natural Resources

Kyle Shertzer, Paul Conn — National Marine Fisheries
Service

May 2011

These slides
pilfered from J.
Fieberg



Outline

* Data sources in MN
* Integrated population modeling approach

e Simulation results
e MN black bears

Fieberg JR, Shertzer KW, Conn PB, Noyce KV, Garshelis DL, 2010
Integrated Population Modeling of Black Bears in Minnesota:
Implications for Monitoring and Management. PLoS ONE 5(8): e12114.
doi:10.1371/journal.pone.0012114



Importance of Harvest Data

» Relatively inexpensive to collect

* Can be obtained over large geographical
areas

Question: are “large harvests” due to:
— High population size (N), average harvest rates
— Average N, with above average harvest rates

Key: age data and temporal covariates



Year/Age
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003

0.5

|

10
28
17

29

17
35
48
44
61
20
76

1.5
478
607
432
649

1001
569
1233
502
721
1394
903
1216
1274
603
311

2.5
535
545
649
609
580
642
800
524
3849
722

1054
682
1446
404
1156

3.5
143
369
275
598
318
297
703
228
563
594
365
666
468
301
432

4.5
221
132
249
288
286
157
390
200
193
435
312
244
505

90
351

5.5
103
175

64
268
175
171
231

83
176
174
284
215
186
149
114

6.5
34
106
78
34
152
94
296
55
112
179
100
197
172
46
168



Data Sources for Model

 Harvest records since 1980
— Total harvest from check stations
— Teeth for aging (~70% compliance)

* Temporal covariates
— Natural food availability index

— Measures of hunter effort

e Population estimates from statewide mark-
recapture studies (1991, 1997, 2002, 2008)



Additional information

* Telemetry data (3 study sites)
— Mortality rates (hunting, non-hunting)

o Estimates of cub survival, litter size from den checks



Basic approach

* Specify deterministic population model
— Natural mortality rates

— Harvest rates

e Estimate age distribution 1n 1980, cubs in
years 1981-2008.

e Minimizing a y? objective function:




Time O (January);

mitialize model

SEA50N, year ! Hme sep

Sept. [ Oct m
I I =
I ‘ p » |
Matural mortality Time
L
March: Bears Calculate Calculate January:
amerge from pre-harvest  post-hunting Determine #
dens abundance, abundance, of new cubs

subtracting subtracling out
out nafural  hapsest
martalihes miartality



Initial Abundances (1980)

N eee N : :
22 2 Fixed: cub survival, female

N. 2,4+1
l yearling survival

A
N32 *°° N3A N3,A+1

Estimated parameters:
Ny, cee N, Ny oo Male yearling surviyal
| \ l - Adult (age 2+) survival by sex

N Y2 *°° N YA N Y, A+1

800C-0861 STeaX

Harvest rate model:
No. of cubs (1981-2007) N(yr,sex,age)-> H(age,sex,yr)



Two Harvest models

* H(a,s,f,e) : age, sex, food availability, hunting
effort = “Food-Effort model”

— Recover relationships observed 1n telemetry data?

* H(a,s,yr): age, sex, year effects = “Year
model”

— 29 yr parameters...
push limits of the data...



Mark-Recapture Estimates

* Add a penalty term to ¥ objective function :

Ao +w* [(Nmodel_Ntet)/ SE(Ntet)]2
* Tried weights, w, of 0, 1, and 200

» Strike a balance (fit age-at-harvest, M-R)



Questions

* How robust 1s the modeling approach?

— Food-Effort model versus Year model?
e How useful are the M-R data?
« Effect of weighting?

...simulations



Simulation Scenar10s
Looked at several forms of model mis-specification
 Stochastic survival/harvest
e Trends 1n harvest/survival rates
* Reporting errors (yearlings under-reported)

* Food by sex interaction
« “Kitchen sink™ (all of the above)




Some conclusions

Estimates of abundance often biased
Trends robust to model mis-specification

Y ear model sometimes unstable, imprecise at
end of time series

M-R data

— Helped to get scale right
— Weighting influenced MSE for trends



...MN black bear data
(1980-2008)

 Fit both harvest models

* With and without mark-recapture data.



Application to MN black bears






Average harvest probabilities
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1 Effects of food and hunting effort agree with telemetry
data

2 Non-linear age trend

1 May reflect model mis-specificaiton



Recruitment dynamics



Harvest Model Conclusions

» Absolute abundance estimates may be
biased due to model mis-specification
* Robust trend estimates

— But may require data explaining year-to-year
variability 1n harvest

 With M-R data...robust and viable
population monitoring program



Future directions
* Model recruitment dynamics

 Incorporate random effects
— Allow more flexibility in Food-Effort model

— Borrow strength 1n latter years with less information
(Year model)

* Explore methods for estimating uncertainty

— bootstrap, cross-validation, large sample asymptotics



Complex....

Is all this
necessary’?’



Alternatives?

* Downing reconstruction

— Assumes constant ratio of hunting to non-
hunting mortality

— Constant harvest rates for last 2 age classes
— Collapsed to yearlings, age 2, age 3, age 4+
* Other reconstruction approaches



Reconstruction
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2 Large scale trends similar
2 Different assumptions and methods (so, slightly different trends).



Tradeotfs

Simplicity (Downing +++)

Flexibility, ability to incorporate additional
data (Model +++)

Estimates for recent years (Model +)

Test hypotheses (Model +++)



Summary: MN black bears

* Integrated population modeling likely will
be a useful tool for monitoring black bears
in MN

* Simulation exercises were critical for
developing intuition on what model
structures provided useful inferences

(models with freely time-varying parameter
stank)



The importance of power analysis

* | hope you don’t come away from this
workshop thinking that all you need to do 1s
collect a little bit of extra data to use these
methods

* A better question i1s “how MUCH more data
do I need to collect?” (1.e. how many

animals to I need to put radio-collars on,
etc.)



The importance of power analysis

* Power analysis: a simulation or expected
value data exercise that relates necessary
sample sizes to a desired outcome (e.g. a

coefficient of variation on estimated
abundance = 0.2)



Example: Colorado Power Analysis

Questions

1. Would joint modeling with age-at-harvest
data and data from marked individuals be a
viable means of monitoring black bear
populations in CO??

2. If so, how long would studies need to be and
how many individuals would need to be
marked per year?



Colorado Power Analysis

- Focused on radio telemetry studies as these give
the most information per animal marked

* Focused on females (again)

» Focused on estimation of population trend rather
than absolute abundance

A+1
N N N\ V. — 3N aN;
i\' i = ;\ j. Z ;\ 17 ;\ j. = faﬂ —+ _.1'_’31 l

j=2



Colorado Power Analysis

Simulating Data

Individual based model adapted from White, Gill, and
Beck (unpublished manuscript) allowing for individual
heterogeneity and a Markov model for cub status.

» Adult females (age 5+) breed every other year

* # female cubs per adult female = 0-3, with
probabilities determined by Beck (1991)

* Heterogeneity, covariance between initial
marking probability and recovery rate

7 0] [0.10 o,
L?] ~ f ([0] ) [{;rph ﬂﬁ('l])
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Colorado Power Analysis

Simulating Data

Three possible population models:

Model A ;:

0 0 0 0 0 0.37]

06 0 0 0 0 0
085 0 0 0 0
0 08 0 0 O

0

0

0O 0 0 08 0 0
0 0 0 0 0.880.88 ]

E(h) = 0.06, 0.05
A =0.998

[0 0 0
0.6 0 0
0 0.83 0
0 0 083
0O 0 0
0O 0 0

0
0
0
0

0.86
0

Model Aj;:
0 0 0 0 0 037
0.6 0 0 0 0 0
0 0.805 0 0 0 0
0 0 0805 0 0 0
0 0 0 0.825 0 0
0 0 0 0 0.825 0.825 |

0 037
0 0
0 0
0 0
0 0
0.86 0.86

E(h) = 0.104, 0.085
A= 0.958



Colorado Power Analysis

Simulation Inputs:

RSD,: No Censoring

e Number of years =35 or 10

 Population size (250 or 500)

* Number of animals marked per year (10, 20, or 30)

* Correlation between recovery and 1nitial marking
probability = 0.0 or 0.5

*A=0.998, 0.981, 0.958



Colorado Power Analysis

Simulation Inputs:

RSD,: Censoring

* Number of years = 10

 Population size (250 or 500)

* Number of animals marked per year (10, 20, or 30)

* Correlation between recovery and 1nitial marking
probability = 0.0

*A=0.998, 0.981, 0.958



Colorado Power Analysis

Estimation Model
SO SA SA SA SA
Age 0 > Age 1l » Age 2 » Age3 > Age 4 > Age 5+

/

h fixed to zero for cubs and constant over
remaining age classes



Colorado Power Analysis

Response Variables

For each simulation input combination, I performed 5
simulations. Conditional on convergence, I recorded
the following with respect to 3:

- Percent relative bias (% Bias)

* 90% Bayesian HPD interval coverage
 Coefficient of variation (CV)

* Whether or not 0 was within 90% HPD interval



Colorado Power Analysis

Results: Convergence rates

Years Design Expected Releases
10 20 30

5 RSD;  0.55 0.87 0.97
10 RSD; 1.00 0.98 1.00
10 RSD,  0.90 1.00 1.00




Colorado Power Analysis

Results: Power to detect population declines

5 year studies: Little to no power to “detect”
population declines (10-35% for A=0.958).

10 year studies:

Power depends on A _ N
and the number of % >l
expected releases per & °4
year 0.2/

0

1,

]
]
//////
‘r
!

L g

0.981
A

0.998



Colorado Power Analysis

Results: Coverage, %Bias, CV

 Coverage close to

0.04
. A,
“nominal” over all ~ T ——
simulation inputs 3T o ER=10
--=-ER=30
e % Bias of /B1N / ]\[1 %.058 0.981 0.998
=-1.6 (SE 0.2). "%
S T —
. 002 o
« CV on A was predicted to & ==
0 0 ‘ ‘
be 2% to 3% for 10 year 0 ocs —— e

studies (results of RSD,) '



Colorado Power Analysis 91%

Summary

0.04:

 “Power” to detect population
trends reasonable for 10 year
studies; however “power” not
the whole story.

Posterior density

» Apparent negative bias in trend estimator would favor
conservative management 1f not taken into account.

e Abundance, correlation in marking and recovery
probabilities not important factors for trend estimation.



Final Thoughts

*Hidden process/state
space/integrated population modeling

attempts to sitmultaneously make use
of ALL available data

*Potential for permitting relationships
among parameters and even
incorporating individual level
random effects (fitness?, tradeofts?,
density dependence?)



Final Thoughts

If you’re serious about implementing such a
sampling program/modeling approach the
biggest bang for your buck 1s probably

(1) Visiting your agency biometrician

(2) Consult/contract out to a recently
graduated quantitative fisheries or
wildlife masters/PhD student that will
still work for Top Ramen

(3) Consult/contract out with a higher paid
consultant



Questions?



